First g-factor measurement using a radioactive ⁷⁶Kr beam

N. Benczer-Koller^{1,a}, G. Kumbartzki¹, J.R. Cooper², T.J. Mertzimekis³, M.J. Taylor⁴, L. Bernstein², K. Hiles¹, P. Maier-Komor⁵, M.A. McMahan⁶, L. Phair⁶, J. Powell⁶, K.-H. Speidel⁷, and D. Wutte⁶

¹ Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ 08903, USA

² Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

³ NSCL, Michigan State University, East Lansing, MI 48824, USA

⁴ School of Engineering, University of Brighton, Brighton BN2 4GJ, UK

⁵ Technische Universität München, D-85748 Garching, Germany

⁶ Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

⁷ Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, D-53115 Bonn, Germany

Received: 3 December 2004/ Revised version: 17 February 2005 / Published online: 29 June 2005 – © Società Italiana di Fisica / Springer-Verlag 2005

Abstract. The g factor of the first 2_1^+ state of radioactive 76 Kr ($T_{1/2} = 14.8$ h) has been measured using projectile Coulomb excitation in inverse kinematics combined with the transient magnetic-field technique. The 76 Kr beam was produced and accelerated in batch mode (re-cyclotron method) at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron. The g factor $g({}^{76}$ Kr; $2_1^+) = +0.37(11)$ was obtained.

PACS. 21.10.Ky Electromagnetic moments – 25.70.De Coulomb excitation

1 Introduction

The variation of magnetic moments of excited nuclear states as a function of spin and energy, or across a range of N or Z can provide significant information on the microscopic structure of nuclei. Recently, new methods have been developed which use the transient field technique and Coulomb excitation of a beam by a light target in inverse kinematics. These methods are particularly suited to measurements of nuclei that can only be produced in the form of *radioactive beams*.

This paper describes the production of a beam of ⁷⁶Kr $(T_{1/2} = 14.8 \text{ h} \text{ and the procedure used to measure, for the first time, the g factor of the <math>2_1^+$ state. The details have been reported in refs. [1,2,3] and references therein.

2 Experimental technique

2.1 Production of ⁷⁶Kr

The ⁷⁶Kr radioactive ions were produced and accelerated using a batch mode method involving only one accelerator and therefore was named the "re-cyclotron method" [2].

Approximately 10^{14} ⁷⁶Kr nuclei were produced in the reaction $^{74}\text{Se}(\alpha, 2n)^{76}\text{Kr}$ during a 17-hour production period using a 38 MeV, 6 particle- μ A ⁴He, beam on a

165 mg/cm² thick metallic ⁷⁴Se target. After irradiation the selenium was melted to release the krypton, which was transferred via a He gas flow to a cryogenic trap. After release from the trap into the Advanced Electron Cyclotron Resonance-U ion source(AECR-U) the 88-Inch Cyclotron accelerated ⁷⁶Kr⁺¹⁵ ions to 230 MeV producing currents as high as 3×10^8 particles per second and yielding an average current of 4×10^7 particles per second for two hours on target.

Three batches were produced. For comparison with radioactive beam facilities providing a continuous beam, a total intensity of 8×10^{11} of 76 Kr was obtained, equivalent to a constant beam of 1.6×10^{6} particles per second for five days.

2.2 g-factor measurement

The transient field technique in inverse kinematics was used. The target was a layered structure of ^{26}Mg , gadolinium and copper.

Four Clover detectors were used to detect the γ rays, and a solar cell detector was used to detect the Mg ions. The radioactive beam exiting from the target was stopped in a moving tape mounted behind the target.

Figure 1 shows the γ -ray spectra obtained from the activity accumulated in the copper layer of the target and the coincidence particle- γ -ray spectra from which all contaminant radiations were removed.

^a e-mail: nkoller@physics.rutgers.edu

Fig. 1. Top: a background spectrum taken after the end of a 76 Kr beam batch cycle. Middle: a γ -ray spectrum taken in coincidence with particles. Bottom: the same Clover spectrum as shown in the middle panel with random coincidences sub-tracted. Only the 76 Kr γ -ray lines remain.

The extraction of a g factor requires a knowledge of the particle— γ -ray angular correlation. However, since the angular correlation should be very similar to that obtained under the same kinematic conditions with a stable beam of a neighbouring isotope, and in view of the similarity between the energy level structure of ⁷⁶Kr and ⁷⁸Kr, angular correlation and precession measurements were carried out with a ⁷⁸Kr beam.

In six hours, 800 events/Clover in the photopeak of the $^{76}{\rm Kr},\,2^+_1\rightarrow 0^+_1$ transition, were recorded for each field direction. In 2.5 h, 7×10^4 counts/Clover and field direction were recorded for the $^{78}{\rm Kr},\,2^+_1\rightarrow 0^+_1$ transition.

The g factor of the 2_1^+ state in 76 Kr can be directly written in terms of the known g factor of the 2_1^+ state in 78 Kr, $g({}^{76}$ Kr; $2_1^+) = g({}^{78}$ Kr; $2_1^+) \times \frac{\epsilon({}^{76}$ Kr)}{\epsilon({}^{78}Kr)} = +0.37(11), where ϵ is related to the change in counting rate observed when the external magnetizing field is changed from the up to the down direction with respect to the γ -ray detection plane.

3 Discussion

The g factors of the 2_1^+ states in the Kr isotopes have been measured across the region from the semi-magic ⁸⁶Kr to the lightest, radioactive ⁷⁶Kr and are summarized in fig. 2.

Fig. 2. B(E2) values in e^2b^2 and g factors for even Kr isotopes. The curves are IBA-II calculations as described in ref. [1] and the g factor for ⁷⁶Kr is from this work.

Semi-magic ${}^{86}_{50}$ Kr has a large positive $g(2^+_1)$ factor of +1.12(14) (off scale in fig. 2) a clear indication of proton excitations. The two $g_{9/2}$ neutron holes in 84 Kr are responsible for the smaller g factor for the 2^+_1 state. However, as more neutrons are removed, the g factors of the 2^+_1 states increase progressively toward the collective value of Z/A. At the same time, the g factors of the 4^+_1 and 2^+_2 states also tend to be equal to the nominal Z/A value [1].

Calculations based on the interacting boson model IBA-II, a "pairing-corrected" collective model and the shell model are described in refs. [1,4].

In summary, this experiment provided the first measurement of a g factor carried out by the Coulomb excitation/transient field technique on a radioactive beam and supports the applicability of the method to the measurements of magnetic moments on radioactive beams. The result confirms the collective nature of the structure of the 2^+_1 state of 76 Kr.

The work was performed under the auspices of the U.S. Department of Energy and the U.S. National Science Foundation.

References

- 1. T.J. Mertzimekis et al., Phys. Rev. C 64, 024314 (2001).
- J.R. Cooper *et al.*, Nucl. Instrum. Methods Phys. Res. A 253, 287 (2004).
- 3. G. Kumbartzki et al., Phys. Lett. B 591, 213 (2004).
- T.J. Mertzimekis, A.E. Stuchbery, N. Benczer-Koller, M.J. Taylor, Phys. Rev. C 68, 054304 (2003).